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Coronary Artery Spasm in Memory of Prof Attilio Maseri

Professor Maseri was a pioneer who blazed a trail in the field of coronary 
vasomotion abnormalities from its dawning age and was one of the most 
prominent physician-scientists represented in the history of the field.1,2 More 
than 40 years ago, he demonstrated that myocardial ischaemia can be 
caused by coronary vasomotion abnormalities, such as coronary vasospasm 
and distal coronary constriction, even in the absence of fixed obstructive 
coronary artery disease.3–5 Moreover, he showed that coronary vasospasm 
can be relieved by treatment with calcium-channel blockers, a drug of 
choice for contemporary vasodilator therapy in patients with vasospastic 
angina.6 Revascularisation of the culprit lesion has long been a cornerstone 
of modern care for ischaemic heart disease because of easy visibility on 
coronary angiography and amenability to procedural interventions by 
means of percutaneous coronary intervention (PCI) and coronary artery 
bypass grafting (CABG). However, approximately half of patients with signs 
and symptoms suggestive of myocardial ischaemia do not have obstructive, 
flow-limiting coronary artery stenosis on coronary angiography.7–16 The term 
ischaemia with non-obstructive coronary artery disease (INOCA) has been 
coined to define patients with this particular condition.17,18 The major 
mechanisms of myocardial ischaemia in patients with INOCA include 
coronary vasospasm and coronary microvascular dysfunction (CMD), the 
latter of which manifests itself as the structural and functional abnormalities 
of the coronary microvasculature, including coronary microvascular 
spasm.18,19 CMD is more prevalent than previously thought in many clinical 
settings, associated with worse clinical outcomes.12,13,20,22–33 A large-scale 

nationwide survey in the US evaluating a total of 12,062,081 coronary 
revascularisations revealed that risk-adjusted mortality did not decrease 
after PCI across all clinical indications.34 In line with these results, a 
questionable benefit of revascularisation by PCI or CABG versus optimal 
medical therapy in patients with stable coronary artery disease has been 
replicated by the findings of the two landmark clinical trials, the ORBITA trial 
and the ISCHEMIA trial.35,36 A recent post-hoc analysis of the ISCHEMIA trial 
showed that the prevalence of INOCA was at least 13% (476/3,612) in the 
participants with moderate or severe myocardial ischaemia, who were 
characterised by younger age, female preponderance, and lower 
atherosclerotic burden.37 Notably, the severity of ischaemia was not 
associated with that of non-obstructive coronary atherosclerosis.37 Although 
these trials did not primarily focus on coronary microvascular function, a 
fascinating speculation is that coronary vasomotion abnormalities, such as 
coronary vasospasm and CMD may contribute to myocardial ischaemia 
even after successful revascularisation, as predicted previously by Professor 
Maseri.38 This review will highlight the pioneering works of Professor Maseri 
and cutting-edge research on CMD from bench to bedside, with focus 
placed on the clinical implications of coronary microvascular spasm.

Mechanisms of Myocardial Ischaemia
The coronary circulation consists of epicardial conductive arteries 
(>500 μm in diameter), prearterioles (100–500 μm), arterioles (<100 μm), 
capillaries, and veins.39–41 Only epicardial coronary vessels are visible on 
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coronary angiography, although most of the coronary resistance is 
determined by the coronary microcirculation. The mechanisms of 
myocardial ischaemia are three-fold: obstructive, flow-limiting stenosis 
of epicardial coronary arteries; epicardial coronary vasospasm; and 
CMD (Figure 1).19,42,43 The latter two mechanisms have been acknowledged 
as the major culprits of myocardial ischaemia in INOCA, although it took 
many years for the cardiovascular scientific community to accept the 
idea of vasospastic myocardial ischaemia in patients with variant 
angina.18,19,44–46 Armed with radioisotope techniques for measuring 
coronary blood flow, Professor Maseri proved that epicardial coronary 
vasospasm is a cause of spontaneous angina at rest in patients with 
variant angina.47–57 This proposal initially faced many criticisms because 
it contradicted the prevailing dogma that myocardial ischaemia was 
solely attributable to fixed obstructive coronary artery disease.46,58,59 
Indeed, coronary vasospasm was once defined as “the resort of the 
diagnostically destitute” based on the pathological notion that 
atherosclerotic coronary arteries could not constrict.59 Nonetheless, an 
expanding body of evidence has demonstrated that coronary functional 
abnormalities manifested as coronary vasospasm and CMD play distinct 
roles in the pathophysiology of myocardial ischaemia across a wide 
spectrum of cardiovascular diseases.19,41,44,60–62 In the 2019 European 
Society of Cardiology Guidelines for the diagnosis and management of 
chronic coronary syndromes (CCS), patients with angina and suspected 
vasospastic or microvascular disease are classified as CCS V, which is 
one of the most frequently encountered clinical scenarios in patients 
with CCS.63

Enhanced coronary vasoconstrictive reactivity at epicardial and 
microvascular levels causes a transient decrease in coronary blood 
flow, resulting in supply ischaemia or primary angina (Figure 2).54,64 
Coronary microvascular spasm is one of the mechanisms responsible 
for myocardial ischaemia in patients with microvascular angina (MVA).65 
On the other hand, impaired endothelium-dependent and -independent 
coronary vasodilator capacities as well as elevated coronary 
microvascular resistance secondary to structural factors (e.g. luminal 
narrowing, vascular rarefaction, vascular remodelling and extramural 
compression) cause myocardial ischaemia when oxygen consumption is 
increased in the same way as obstructive coronary stenosis, leading to 
demand ischaemia or secondary angina (Figure 2).54,64 These underlying 
mechanisms often overlap and coexist in various combinations 

associated with variable degrees of coronary atherosclerosis, making 
the clinical picture of patients with INOCA highly heterogeneous 
(Figure 1).13,30,66,67 Accordingly, comprehensive assessment of coronary 
vasomotor reactivity by invasive functional coronary angiography or 
interventional diagnostic procedure using vasoactive agents (e.g. 
acetylcholine and adenosine) is recommended to identify the underlying 
mechanisms of myocardial ischaemia and to tailor the most appropriate 
treatment and management based on the endotype of INOCA.18,45 A 
good example of this tailored therapeutic strategy is provided by the 
CorMicA trial demonstrating that a stratified medical treatment driven 
by the results of coronary reactivity testing is beneficial in patients with 
INOCA.14 The provisional notion of Professor Maseri is certainly pertinent 
that a pathogenetic classification of angina may be helpful for the 
management of patients with the disease.54,64

Clinical Presentation of Coronary 
Microvascular Spasm
Coronary microvascular spasm may manifest symptomatically as MVA.65 
Patients with this condition may present with typical angina, angina 
equivalents, such as dyspnoea and fatigue, and other atypical symptoms 
occurring not only at rest but also on exertion. In some cases, coronary 
microvascular spasm may be identified in asymptomatic subjects.65 
Patients with coronary microvascular spasm are characterised by 
predominance of postmenopausal women, fewer coronary risk factors 
including smoking, and longer duration of angina.30,65,68–73 Although the 
prognosis of patients with MVA has been considered to be benign in most 
cases, the symptoms are often refractory to conventional treatment with 
calcium-channel blockers alone, leading to impaired quality of life.30,69,72–75  
A large-scale (n=686), international, prospective cohort study by the 
Coronary Vasomotor Disorders International Study (COVADIS) Group 
recently showed that microvascular angina, in which coronary 
microvascular spasm was the most frequent aetiology (42%), is a 
considerable health problem regardless of sex or ethnicity and associated 
with major adverse cardiovascular events driven by hospitalisation due to 
unstable angina.76 The prevalence of coronary microvascular spasm 
ranges from approximately 20–50% in patients with INOCA as well as in 
those with MI with non-obstructive coronary arteries, referred to as 
MINOCA.30,67–69,71,72,74,77–83 The mechanisms and aetiologies of INOCA are 
multifactorial and heterogeneous, often overlapping and coexisting in 
various combinations in a subclinical fashion.13,14,30,66,67,72,77 Indeed, a 
substantial proportion of patients with INOCA differ in the underlying 
aetiology of myocardial ischaemia. If complicated with CMD, the patient 
outcomes are at stake with increased future adverse cardiac events.20,22–33 
Thus, comprehensive and multidisciplinary assessment of coronary 
vasomotor reactivity should be adopted to endotype patients with INOCA 
based on the underlying mechanisms of coronary vasomotion 
abnormalities for better risk stratification and management.14,18,45 Coronary 
microvascular spasm should not be dismissed under the umbrella of 
normal coronary arteries.

Diagnosis of Coronary Microvascular Spasm
The COVADIS Group has proposed a consensus set of standardised 
diagnostic criteria for MVA composed of four essential elements: 
symptoms of myocardial ischaemia; absence of obstructive coronary 
artery disease on coronary angiography; objective evidence of myocardial 
ischaemia; and evidence of impaired coronary microvascular function.65 
The documentation of coronary microvascular spasm is listed as one of 
the standard criteria for impaired coronary microvascular function, 
defined as the reproduction of symptoms, ischaemic ECG changes, but no 
epicardial spasm during acetylcholine provocation testing.65 The 

Figure 1: Mechanisms of Myocardial 
Ischaemia and Landmark Clinical Trials

These mechanisms often overlap and coexist in various combinations associated with variable 
severity of coronary atherosclerosis. The area outside the circles may include chest pain of 
non-cardiac origin, diffuse non-obstructive coronary artery disease, or myocardial ischaemia of 
undetermined origin. INOCA = ischaemia with non-obstructive coronary artery disease.
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diagnostic value of these criteria has been demonstrated by recent 
clinical studies.14,30,72,76

In equivocal cases with non-diagnostic results for coronary microvascular 
spasm, such as reproduction of symptoms during the provocation test 
without ischaemic ECG changes and vice versa, myocardial ischaemia 
attributable to coronary microvascular spasm can be diagnosed using 
myocardial lactate extraction ratio or desaturation of coronary sinus 
blood.65,68–70,78,84,85 Lactate arises when the rate of glycolysis exceeds that 
of oxidation in the setting of anaerobic metabolism due to cellular hypoxia 
and thus transient metabolic alterations represented by myocardial 
lactate production serve as an objective marker of myocardial ischaemia 
during the spasm provocation testing.86 Briefly, blood samples are 
obtained simultaneously from the coronary sinus and left coronary artery 
during the spasm provocation testing.68,84 The net production of lactate 
across the coronary circulation can be calculated as (coronary sinus 
concentration – left coronary arterial concentration) divided by left 
coronary arterial concentration; a positive value indicates pathological 
production or release and a negative value physiological uptake or 
metabolism of lactate in the coronary circulation.68,84 Thrombolysis in MI 
(TIMI) frame count, a marker of coronary blood flow, during the spasm 
provocation testing may be an alternative indirect method to diagnose 
the occurrence of coronary microvascular spasm.78

Pathophysiology of Coronary 
Microvascular Dysfunction
Endothelial Modulation of Vascular Tone 
and Therapeutic Considerations
The endothelium, a mono-layer of endothelial cells lining the 

cardiovascular system, plays a pivotal role in modulating vascular tone by 
synthesising and liberating endothelium-derived relaxing factors (EDRFs), 
including vasodilator prostaglandins (e.g. prostacyclin), nitric oxide (NO), 
and endothelium-dependent hyperpolarisation (EDH) factors as well as 
endothelium-derived contracting factors (EDCFs) in response to shear 
stress and various agonists in vivo (Figure 2).41,44 EDH-mediated responses 
are observed in the presence of cyclooxygenase and NO synthase 
inhibitors and are accompanied with hyperpolarisation and relaxation of 
the underlying vascular smooth muscle cells (VSMC) and subsequent 
vasodilatation.41,44 Although the nature of EDH factors appears to vary 
depending on species and vascular beds, endothelium-derived hydrogen 
peroxide at physiological low concentrations plays a major role in EDH-
mediated relaxations in the coronary circulation of humans and 
animals.87–91 In-depth information on other EDH factors is available 
elsewhere.41 These endothelium-derived mediators have a distinct vessel 
size-dependent role universally across a range of species from rodents to 
humans; NO predominantly mediates vasodilatation of relatively large, 
conduit vessels (e.g. epicardial coronary arteries), while EDH factors in 
small resistance vessels (e.g. coronary arterioles and microvessels) 
(Figure 2).41,44,92,93 Consequently, EDH-mediated relaxations are an 
important vasodilatory mechanism in coronary microcirculation, where 
coronary vascular resistance is predominantly determined. Coronary 
blood flow actually does not increase in response to intracoronary 
administration of nitroglycerin.94 EDH-mediated responses are enhanced 
in small resistance arteries through multiple mechanisms, including 
negative interactions between NO and several EDH factors.95,96

Endothelial dysfunction manifests itself as reduced production or action of 
EDRFs or increased responses of EDCFs.41,44 Along with coronary 
microvascular spasm, endothelial dysfunction contributes to the 
development of CMD.39–41 A large-scale cohort study (n=1,439) from the 
Mayo Clinic showed that as many as two-thirds of patients with INOCA 
had either endothelium-dependent or -independent CMD as a plausible 
aetiology of symptoms and signs of myocardial ischaemia, which was 
evaluated by invasive functional coronary angiography.13 Endothelium-
dependent CMD is associated with coronary atherosclerosis and 
vulnerable plaque characteristics in patients with INOCA.94 Moreover, 
recent studies have revealed that CMD is a cardiac manifestation of the 
systemic small artery disease beyond the heart because of its 
concomitance with peripheral endothelial dysfunction.14,28,67 For example, 
both NO- and EDH-mediated digital vasodilatations in response to 
bradykinin are markedly impaired in patients with MVA.67

Contrary to a simple assumption that enhancing NO-mediated 
vasodilatation through supplemental NO could exert beneficial effects on 
patients with various cardiovascular diseases in whom the prevalence of 
CMD is not negligible, the effects of systemic and long-term administrations 
of nitrates were disappointingly unsuccessful or even harmful in patients 
with residual microvascular ischaemia despite successful PCI, vasospastic 
angina, and heart failure with preserved ejection fraction.97–100 It may be 
important to consider the blood vessel size-dependent contribution of NO 
and EDH factors in the treatment of CMD and to tailor the most appropriate 
therapy based on the underlying mechanisms of coronary vasomotion 
abnormalities (Figure 2).

Rho-kinase and Vasoconstrictive Mediators
Coronary vasoconstriction and vasospasm are the important determinants 
of supply ischaemia or primary angina, even in patients who have no 
obstructive stenosis or angiographically normal coronary arteries.44,46,101 
The degree of coronary vasoconstriction is determined by the potency/

Figure 2: Vessel Size-dependent Contribution 
of Endothelium-derived Relaxing Factors and 
Mechanisms of Coronary Microvascular Dysfunction

EDH = endothelium-dependent hyperpolarisation; INOCA = ischaemia with non-obstructive 
coronary artery disease; NO = nitric oxide.
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efficacy of constrictor stimuli and the sensitivity/reactivity of blood 
vessels.46 Rho-kinase-induced myosin light chain phosphorylation with 
resultant VSMC hypercontraction is a major mechanism in the 
pathogenesis of coronary vasospasm (Figure 2).44,102–104 Intracoronary 
administration of fasudil, a selective Rho-kinase inhibitor, is effective for 
relieving refractory epicardial coronary spasm resistant to calcium-
channel blockers or nitrates, coronary microvascular spasm, and the 
coronary slow flow phenomenon after PCI, although this drug has not yet 
been approved for clinical use in western countries.105–107 Moreover, Rho-
kinase activity is elevated in patients with vasospastic angina who have 
high coronary microvascular resistance.30 Enhanced epicardial and 
coronary microvascular constriction/spasm is associated with increased 
production of vasoconstrictive mediators, including neuropeptide Y, 
endothelin-1, serotonin, and inflammatory responses as discussed below 
(Figure 2). 61,108–112 These vasoconstrictors have the potential to cause 
coronary artery constriction and myocardial ischaemia above the 
coronary autoregulation.113

Inflammation and Coronary Vasospasm
Chronic low-grade vascular inflammatory responses play important roles 
in the underlying mechanisms behind coronary vasospasm and CMD.61 
Professor Maseri paved the way for the inflammatory hypothesis of 
atherosclerotic cardiovascular diseases by simply showing that patients 
with acute coronary syndromes who had elevated levels of C-reactive 
protein on admission were associated with worse outcomes.114 After a 
quarter century of research, this hypothesis was proved to be true by the 
results of the CANTOS study; treatment with canakinumab, a selective 
anti-interleukin-1β monoclonal antibody, significantly reduced the risk of 
recurrent cardiovascular events in patients with a history of MI who had 
a high-sensitive C-reactive protein level of 0.2 mg/dl or more as 
compared with placebo.115 Building on the inflammatory hypothesis, close 
relationships among inflammation, perivascular adipose tissue (PVAT), 
and vasa vasorum have emerged as key players in the pathogenesis of 

coronary artery spasm. A major inflammatory cytokine interleulin-1β 
promotes intimal thickening and coronary vasospastic responses to 
intracoronary serotonin or histamine via outside-to-inside signalling in 
pigs in vivo.116 Enhanced formation of adventitial vasa vasorum, which 
serves as a conduit for inflammatory mediators derived from the 
surrounding inflamed adipose tissue to the local coronary wall, is 
associated with coronary hyperconstriction via Rho-kinase activation in 
patients with vasospastic angina.117 Treatment with calcium-channel 
blockers attenuates inflammation of PVAT in the spastic coronary artery 
in patients with vasospastic angina in a reversible manner.118 Coronary 
vasospasm at epicardial and microvascular levels can be accompanied 
by active myocardial inflammation of cardiac sarcoidosis and 
immunosuppressive therapy in combination with calcium-channel 
blockers may be effective for alleviating the severity of coronary artery 
spasm in parallel with regression of myocardial inflammation of the 
disease.119

Conclusion
The epoch-making results of the two landmark clinical trials, the ORBITA 
and ISCHEMIA trials, for the management of stable coronary artery 
disease serve to recall the importance of coronary vasospasm and CMD 
beyond obstructive coronary artery disease.35,36,38,120 Professor Maseri was 
correct in his “search” for the origin of myocardial ischaemia in the 
absence of obstructive coronary arteries long before practice guidelines 
were published on the management of CCS including INOCA.1,2,18,45,63 He 
was also resourceful in his emphasis on that “elucidation of its mechanisms 
will lead to more appropriate therapy”.121 Cardiologists need to respond to 
the developing evidence irrespective of the performance measures we 
may adhere to in daily practice. Coronary vasomotion abnormalities will 
become increasingly important in the post-ISCHEMIA era. Further research 
is warranted to develop novel therapeutic strategies for coronary 
vasomotion abnormalities to improve the clinical outcomes of patients 
with the disease. 
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