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Future perspectives of cell therapy for neonatal
hypoxic–ischemic encephalopathy
Makoto Nabetani1,2, Haruo Shintaku2 and Takashi Hamazaki2

Neonatal ischemic brain injury causes permanent motor-
deficit cerebral palsy. Hypoxic–ischemic encephalopathy (HIE)
is a very serious condition that can result in death and
disability. In 1997, we reported that irreversible neuronal cell
damage is induced by the elevation of intracellular Ca ion
concentration that has occurred in sequence after excess
accumulation of the excitatory neurotransmitter glutamate
during ischemia. We also reported that hypothermia was
effective in treating ischemic brain damage in rats by
suppressing energy loss and raising intracellular Ca ion
concentration. Following the 2010 revised International
Liaison Committee on Resuscitation guideline, our group
developed the Guideline for the treatment of Hypothermia in
Japan, and we started online case registry in January 2012.
However, therapeutic hypothermia must be initiated within
the first 6 h after birth. By contrast, cell therapy may have a
much longer therapeutic time window because it might
reduce apoptosis/oxidative stress and enhance the regen-
erative process. In 2014, we administered autologous
umbilical cord blood stem cell (UCBC) therapy for neonatal
HIE, for the first time in Japan. We enrolled five full-term
newborns with moderate-to-severe HIE. Our autologous UCBC
therapy is leading to new protocols for the prevention of
ischemic brain damage.

A lthough the neonatal mortality rate has decreased
considerably over the past several decades worldwide, a

vast difference among many countries still exists (1). In Japan
there has been a significant decrease in the neonatal mortality
rate in the past 30 years—from 2.7/100,000 to 1.0/100,000
births, similar to that in other countries with a sophisticated
medical system. However, the prevalence of cerebral palsy
(CP) due to preterm and term ischemic brain injury has
remained at the same rate over several decades, even in highly
developed countries (2–4). Neonatal brain injury in full-term
infants is caused mainly by neonatal hypoxic–ischemic
encephalopathy (HIE), congenital anomaly, and cerebral
infarction, whereas neonatal brain injury in preterm infants
is caused mainly by periventricular leukomalacia (PVL) and

intraventricular hemorrhage (5). HIE in term infants is a
particularly serious condition; it occurs in an estimated 0.5–
2/1,000 live births and results in death and disability (6–8).
In the past, more than half of moderate-to-severe cases of
neonatal HIE resulted in permanent motor-deficit CP, and CP
was often accompanied by other severe complications, such as
hearing loss, visual disturbance, epilepsy, hydrocephalus,
intellectual disability, and behavioral problems (9). In recent
years, however, therapeutic brain hypothermia has been
established as the first effective therapy for neonates with HIE
(10–12). Furthermore, cell therapies such as umbilical cord
blood stem cells (UCBCs), bone marrow (BM) stem cells,
and umbilical cord/BM–derived mesenchymal stem cells
(BM-MSCs) are being incorporated into new protocols for
protection against ischemic brain damage.

MECHANISM OF NEONATAL HIE
In 1969, Olney (13,14) discovered excitotoxicity and demon-
strated that at least some of the neural cell death caused by
hypoxia–ischemia was mediated by excess production of the
excitatory neurotransmitter glutamate. In contrast to the
experience with adult hypoxic–ischemic insults, neonatolo-
gists found that some infants who had recovered smoothly
from severe asphyxia subsequently deteriorated rapidly and
died a few days later. No effective therapy was available for
such brain damage for several decades. In the 1980s,
researchers reported the phenomenon of delayed neuronal
death (15,16). In the 1990s, Osmund Reynolds’s group
confirmed the phenomenon of delayed neuronal death of
newborns after hypoxic ischemic insults, called “secondary
energy failure,” using a sophisticated phosphorus magnetic
resonance spectroscopy approach to replicate the complicated
process in piglets and rat pups (17–20).
In 1984, Olney and co-workers (21) shifted the paradigm,

proposing that hypoxic–ischemic damage can be treated by
blocking N-methyl-D-aspartate and suggesting that it can be
blocked pharmacologically to provide good protection against
neonatal hypoxic–ischemic brain damage. Regrettably, the
N-methyl-D-aspartate receptor blocker and other drugs, such
as magnesium sulfate and calcium channel antagonists, were
not effective clinically (22,23). In 1997, we reported that
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irreversible neuronal cell damage was triggered by an
elevation of intracellular Ca ion concentration subsequent to
excessive accumulation of the excitatory neurotransmitter
glutamate in immature and mature rats during ischemia and
glucose deprivation (24). The crucial role of free radicals to
result in irreversible cell damage was generated in consider-
able part of Ca2+-activated processes (25–30). However, it is
clinically impossible to pinpoint the timing of these mechan-
isms and identify which mechanism determines the severity of
HIE in human neonates (31,32).
In 1989 Busto et al. (33) showed that mild hypothermia

after hypoxia–ischemia insult in adult rats reduced the release
of neurotransmitters and had a protective effect on hippo-
campal neuronal injury. In 1996, Thoresen et al. (34) and
Sirimanne et al. (35)reproduced the protective effect of
hypothermia against brain injury in neonatal rats. We
reported that hypothermia therapy was an effective treatment
for hypoxic or ischemic brain damage in rats by suppressing
energy loss and elevation of intracellular Ca ion concentration
(36)

MECHANISM OF STEM CELL THERAPY AS A REGENERATIVE
TREATMENT FOR NEONATAL HIE
Recent experimental studies in animal models have indicated
that various mechanisms of action are involved in the process
by which UCBCs protect the brain from hypoxic–ischemic
damage. They may also be expected to enhance recovery from
brain damage. The brain damage process is divided into five
stages: (1) energy depletion, (2) inflammation, (3) excitotox-
ity, (4) oxidative stress, and (5) apoptosis (Figure 1) (27–29).
Cord blood stem cell therapy has been suggested to provide a
protective effect mainly on (2) inflammation, (4) apoptosis,
and (5) oxidative stress, as well as to enhance regeneration.

Immunomodulation/Anti-Inflammatory Action
It is not yet known which component of cord blood is most
efficacious for treating brain injury-mediated inflammation.
Specific cell populations found in cord blood and tissue, such
as MSCs and endothelial progenitor cells, have demonstrated
potential utility for mitigating the inflammatory process
induced by brain injury. MSCs have strong immunomodu-
latory effects, protecting against global and local neuroin-
flammatory cascades triggered by hypoxic–ischemic events
(37–39). Some reports suggest that UCBC administration also

reduces white matter injury after hypoxic–ischemic insult, via
a combination of anti-inflammatory and other actions (40).

Reduction of Apoptosis and Oxidative Stress
Hattori reported that a single intraperitoneal injection of
UCBC-derived mononuclear cells 6 h after an ischemic insult
was associated with a transient reduction in the number of
apoptosis and oxidative stress marker–positive cells, but it did
not induce long-term morphological or functional protection
(41–43).

Enhancement of the Regenerative Process by the Secretion of
Various Cytokines
Human CD34+ cells have been shown to secrete various
growth factors such as brain-derived neurotrophic factor, glial
cell line–derived neurotrophic factor, vascular endothelial
growth factor, and numerous angiogenic factors, including
hepatocyte growth factor and insulin-like growth factor-1
(44–47).

Enhancement of the Regenerative Process by Angiogenesis for
Better Circulation of the Brain
In 2004, Taguchi et al. (48,49) reported that after stroke
CD34+ cells provide a favorable environment for neuronal
regeneration, suggesting an essential role of CD34+ cells in
directly or indirectly promoting an environment conducive to
neovascularization of the ischemic brain. It is evident that
circulating endothelial progenitor cells in CD34+ cell popula-
tions enriched in cord blood have the capacity to participate
in the neovascularization of ischemic tissue in neonates
(50,51). Endothelial progenitor cells have angiogenic and
vascular reparative capabilities that make them ideal for
neurovascular repair (52,53). Such a rich vascular environ-
ment, along with the generation of other nurturing neuronal
mediators from CD34+ cells, such as vascular endothelial
growth factor, epidermal growth factor 2, and insulin-like
growth factor 1-1 (refs (54,55)), enhances subsequent
neuronal regeneration. Endogenous neurogenesis is acceler-
ated by neuronal progenitors to the damaged area, followed
by their maturation and survival when CD34+ cells continue
to stimulate the formation of vascular channels (47,56).

Enhancement of the regenerative process by neurogenesis
Neural stem/progenitor cells have been shown to participate
in the regenerative response to perinatal hypoxia–ischemia
(57). One article reported that hematopoietic stem cells could
differentiate into nonlymphohematopoietic cells such as
neurons or microglia or could stimulate neurogenesis (58).
However, it is uncertain whether this is significantly effective
for neonates with HIE (59–63).

FRAMEWORK OF PROTECTIVE THERAPY FOR NEONATAL HIE
IN JAPAN
In the early twenty-first century, therapeutic hypothermia
(TH) was used for newborns with HIE. Three large-scale
randomized controlled trials were performed and proved the
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Figure 1. Neonatal brain injury in hypoxic–ischemic encephalopathy.
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feasibility and efficacy of TH in 2005 (ref. (10–12)).
Furthermore, the 2010 revised International Liaison Commit-
tee on Resuscitation guideline by Perlman and co-workers
(64) stated that infants born at or near term with evolving
moderate-to-severe HIE should be offered TH. In Japan, TH
was started in 1999. However, various empirical approaches
prevailed until 2010, and the number of centers capable of
providing standard cooling was insufficient at that time
(Figure 2). Therefore, in August 2010 we conducted a
Primary Nationwide Practice Survey on TH to investigate the
state of practice in Japan. Questionnaires were sent to all
registered level II/III neonatal intensive care units, and
responses were obtained from 203 of 242 units (83.9%)
(65). Only 89 facilities (43.8%) said they provide TH. The
number of infants with HIE in 2009 in the level II/III neonatal
intensive care units was 486. The number of cooled infants in
2009 was 234.
These results suggest that about half of newborns with HIE

might not have received any benefit from TH in 2010.
Therefore, we established the Neonatal Hypothermia Task
Force, Japan and developed the Guideline for the treatment of
Hypothermia in Japan based on randomized controlled trials
in 2011 (ref. (66)). Then, we held several workshops and
consensus meetings to formulate clinical recommendations,
which were followed by the publication of practical textbooks
and large-scale education seminars. We started an online case
registry in January 2012. Findings from the follow-up survey
in January 2013 were compared with the results from the
primary survey (response rate: 89.1%). The number of cooling
centers increased from 89 to 135. Twelve of 47 prefectures had
no cooling centers in 2010, whereas all 47 prefectures had at
least one in 2013. In cooling centers, adherence to the
standard cooling protocols and the use of servo-controlled
cooling devices improved from 20.7% to 94.7% and from
79.8% to 98.5%, respectively. As of December 2016, 900 cases
(4200 cases/year) and 167 cooling units have been registered.
A rapid improvement in the national provision of evidence-
based TH has been achieved. Our strong interventions in
accordance with the international consensus guidelines might
be effective in shifting empirical approaches to evidence-based
practice (67).
To examine the clinical use of TH, we analyzed the data

collected during the first 3 years (2012–2014) of the Baby
Cooling Registry of Japan (67). Of 485 cooled neonates, 96.5%
were at ≥ 36 weeks gestation; 99.4% weighed ≥ 1,800 g. In
addition, 96.7% required resuscitation for 410 min. Stage II
and III encephalopathy was evident in 61.1% and 27.2%,
respectively. The mortality rate was 2.7%; 90.7% were
discharged home. Apgar scores and severity of acidosis/
encephalopathy did not change over time: 1 (1 min), 4
(5 min), and 5 (10 min), and pH (6,68). The time to reach the
target temperature was shorter in 2014 than in 2012.
Mortality, duration of mechanical ventilation, and require-
ment for tube feeding at discharge remained unchanged. The
mortality rate in our cohort (2.7%) was considerably lower
than that reported in previous studies (CoolCap (33%),

NICHD (24%), and UK TOBY (26%)), despite the use of
similar inclusion criteria (10–12). A more recent clinical study
showed a lower short-term mortality rate (7%) in neonates
who were randomized to whole-body cooling to 33.5 °C for
72 h (69). This may be attributable to the difference in
attitudes regarding withdrawing life support for newborns
with very severe brain damage. Global comparative studies are
needed to illuminate the factors associated with short- and
long-term outcomes of cooled neonates. However, TH has the
following restrictions:

(1) Its window of opportunity is ∼ 6 h after birth, and
earlier treatment after birth is more effective.

(2) The number needed to treat is ∼ 9, and so many babies
still die or survive with disability.

Furthermore, a recent randomized controlled trial demon-
strated that longer cooling and/or cooling at lower tempera-
tures, compared with hypothermia at 33.5 °C for 72 h, did not
reduce neonatal intensive care unit death among full-term
neonates with moderate or severe HIE (69).

CLINICAL APPLICATION OF UCBCS THERAPY FOR ISCHEMIC
BRAIN INJURY
In 1982, Nakahata and Ogawa (70) reported that UCB
(Umbilical Cord Blood) contains rich stem cells such as
hematopoietic and MSCs. CD34 surface antigen has been
widely used as a marker of hematopoietic stem and
endothelial progenitor cells. UCB contains ∼ 0.3–2% CD34+

cells, whereas the peripheral blood of adult humans contains
o0.01% CD34+ cells (71–75). The therapeutic effects of UCB
have previously been shown in hematological diseases, such as
leukemia, Fanconi’s anemia, and aplastic anemia, replacing
the use of hematopoietic stem cells over the past few decades
(76–78). However, in recent years, UCB has been identified as
a source of endothelial stem/progenitor cells and as having an
effect on various intractable diseases, including CP, diabetes
mellitus, and cardiac, vascular, and hepatic diseases. Various
stem cell types are possible sources of cell therapy for clinical
applications, especially for neurological diseases (79,80).
Below we highlight the potential therapeutic effects of cell-

180

160

140

120

100

80

60

40

20

0
2000 02 04 06 08

Consensus 2010

2010 12 2014

Figure 2. The number of cooling centers in Japan for treatment of
infants with hypoxic–ischemic encephalopathy.
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based therapies, particularly autologous cord blood therapy
for ischemic disease, which has been progressing markedly in
the past few decades.
In 2006, Meier et al. (81) reported the effectiveness of

intraperitoneal infusion of UCBCs for rats with neonatal
hypoxia. Kurtzberg and co-workers (82), at the Duke
University in the United States, is conducting a phase II
study for CP, using autologous UCBCs. In 2011, Cox et al.
(82) reported a feasibility study showing that autologous BM
mononuclear cells were logistically feasible and safe to
prescribe intravenously for children suffering from traumatic
brain injury. Ten children aged 5 to 14 years who had
postresuscitation Glasgow Coma Scale scores of 5 to 8 were
treated with 6 × 10 autologous BM mononuclear cells per kg
body weight delivered intravenously within 48 h of traumatic
brain injury. All the patients survived. Conventional magnetic
resonance imaging comparing gray matter, white matter, and
cerebral spinal fluid volumes showed no reduction from 1 to
6 months after injury. The Dichotomized Glasgow Outcome
Score at 6 months showed 70% with good outcomes and 30%
with moderate-to-severe disability.
Wang et al. (83) reported a clinical study using BM-MSCs

in CP patients in 2013. They suggested that autologous BM-
MSC transplantation may be a feasible, safe, and effective
therapy for patients with CP. The treatment improved the
development of motor function in children with CP (84).
After providing informed consent, 52 patients with CP who
met the study criteria received BM-MSC transplantation.
Gross motor function was assessed at baseline (before
transplantation) and at 1 month, 6 months, and 18 months
after transplantation. The gross motor function score domains
A, B, C, and D and the total scores in participants increased at
1 month, 6 months, and 18 months after transplantation
compared with the baseline value (Po0.01). The scores of
domain E also increased at 6 and 18 months after
transplantation. The gross motor function scores increased
significantly after cell transplantation.
In 2015, Sharma et al. (84) conducted an open-label,

nonrandomized study in 40 CP patients, with the aim of
evaluating the benefit of cellular therapy in combination with
rehabilitation. These patients received autologous BM mono-
nuclear cells intrathecally. The follow-up was carried out at
1 week, 3 months, and 6 months after the intervention.
Overall, at 6 months, 95% of patients showed improvements.
The study population was further divided into diplegic,
quadriplegic, and miscellaneous groups. On statistical analy-
sis, a significant association was established between cell
therapy and symptomatic improvement in diplegic and
quadriplegic CP. Positron emission tomography-computed
tomography scans performed in six patients showed meta-
bolic improvements in areas of the brain correlating with
clinical improvement. The results of this study demonstrate
that cellular therapy may accelerate development, reduce
disability, and improve the quality of life of patients with
CP (84).

It has also been reported that concomitant administration
of allogeneic UCBCs and recombinant human erythropoietin
may boost the efficacy of UCBCs and ameliorate motor and
cognitive dysfunction in children with CP undergoing active
rehabilitation, accompanied by structural and metabolic
changes in the brain (85). In total, 96 subjects completed
the study. Compared with the recombinant human erythro-
poietin (n= 33) and control (n= 32) groups, the recombinant
human erythropoietin and allogeneic UCBCs (n= 31) group
had significantly higher scores on the gross motor perfor-
mance measure and Bayley scales of infant development-II
mental and motor scales at 6 months. Diffusion tensor images
revealed significant correlations between the gross motor
performance measure increment and changes in fractional
anisotropy in the recombinant human erythropoietin and
allogeneic UCBCs group. 18F-fluorodeoxyglucose positron
emission tomography-computed tomography showed differ-
ent activation and deactivation patterns between the three
groups.
One hundred and eighty patients with diplegia and

quadriplegia after trauma underwent subarachnoid placement
of stem cells between December 2005 and October 2007 in
India. In 102 (56.6%) patients, side effects were observed
(headache, low-grade fever, and meningism), which resolved
with symptomatic treatment within 24 h. It was effective in
32% of patients, with neither short- nor long-term adverse
effects. In long-term follow-up, functional indices improved
in 57 (31.67%) patients: 54 patients with traumatic paraplegia/
quadriplegia, 2 with CP, and 1 with viral encephalitis (86).
Recently, Mancías-Guerra et al. (87) reported an open-label

phase I trial to investigate the safety and tolerability of
intrathecal delivery of autologous BM nucleated cells in
children with CP. Eighteen pediatric patients with CP were
studied to assess the safety of autologous BM–derived total
nucleated cell intrathecal and intravenous injection after
stimulation with granulocyte colony-stimulating factor. An
overall 4.7-month increase in developmental age according to
the Battelle Developmental Inventory, including all areas of
evaluation, was observed (± SD 2.63). No magnetic resonance
imaging changes at 6 months of follow-up were found.
Subarachnoid placement of autologous BM–derived total
nucleated cells in children with CP is a safe procedure.
Compared with BM–derived cells, UCBCs are readily

available if adequately harvested and stored. Cell therapy
using UCBCs has been expanding for novel applications. In a
review article, Rizk et al. (88) reported that the most common
indication for UCB therapy is neurological diseases (25
studies), including CP (12 studies). Other indications include
diabetes mellitus (9 studies), cardiac and vascular diseases (7
studies), and hepatic diseases (4 studies). Most of the studies
used total nucleated cells, mononuclear cells, or CD34+ cells
(31 studies); 20 studies used cord blood–derived MSCs. Forty-
six studies described cellular products obtained from
allogeneic sources, and 11 studies used autologous products.
Rizk et al. (88) identified three indications for which multiple
prospective controlled studies have been published (4 of 4
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reported clinical benefit in CP, 1 of 3 reported benefit for
cirrhosis, and 1 of 3 reported biochemical response in type 1
diabetes).

FUTURE PERSPECTIVES OF CELL THERAPIES FOR NEONATAL
HIE
Feasibility of Autologous Cord Blood Therapy
TH has some limitations in that it must be initiated within the
first 6 h after birth. Recently, a randomized controlled trial of
whole-body hypothermia for 72 h in preterm infants with a
gestational age of 33–35 weeks was started, but TH is under
investigation for premature babies o33 weeks. By contrast,
cell therapy may have much longer therapeutic time windows
(89) and might show effectiveness for ischemic brain damage
of term, near-term, and premature newborns, including
periventricular leukomalacia, intraventricular hemorrhage,
and HIE. Many clinical trials are currently underway to
investigate the efficacy of stem cells to treat patients with
perinatal ischemic brain damage and CP. Stem cells obtained
from umbilical cord tissue and cord blood, normally
discarded after birth, are emerging as a safe and potentially
effective therapy. Among these different cell therapy strate-
gies, intravenous administration of autologous UCBC therapy
could be the safest and most feasible because UCB has been
used for hematopoietic stem cell transplantation in patients
with hematological diseases for several decades (90). Further-
more, UCB contains several types of stem cells such as
hematopoietic stem cells, endothelial progenitor cells, and
MSCs (91,92). Collection of UCB is noninvasive and
autologous, and the use of UCBCs is associated with fewer
ethical issues compared with allogenic or cultured stem cells,
embryonic stem cells, and induced pluripotent stem cells
because autologous UCB carries no possibility of tumorigeni-
city or rejection and does not require a complicated culture
process. Collection, separation and storage of UCBCs have to
be regulated carefully because screening for infection is
required. We propose that autologous UCBCs, in combina-
tion with TH, could be the optimal therapy for newborns with
HIE. We also suggest that autologous UCBC therapy might be
the most feasible treatment for premature newborns with
periventricular leukomalacia or intraventricular hemorrhage
who were born at 24–33 weeks of age.

Experience with Autologous UCBC Therapy in Japan
Cotten et al. (93) showed the feasibility and potential
effectiveness of autologous UCBC therapy for neonatal HIE.
In 2014, we established the Neonatal Encephalopathy
Consortium, Japan research group for autologous UCBC
therapy for neonatal HIE and started using autologous UCBC
therapy for neonatal HIE. This is a pilot study for testing the
feasibility and safety of UCBC therapy in infants with
neonatal HIE; the study is an open-label, single-group
assignment. CD34+ cells decrease rapidly in the neonatal
peripheral blood immediately after birth and tend to reach the
basic level within the first 48 h after delivery (94). Before
proceeding with the human trial, we investigated the viability
and numbers of CD34+ cells in the UCB after automated
mononuclear cell separation. UCB was collected from
mothers who had given prior written informed consent for
the collection. The aseptically collected UCB was processed
using Sepax (Biosafe, Eysins, Switzerland) to reduce volume
and red blood cells for three separate infusions. Without
cryopreservation, the total number and viability of CD34+

cells in the processed UCB remained unchanged over 72 h
(Figure 3). The potassium concentration was also stable after
72 h, to a median of 5.8 mEq/l (1.7–11.6). Because Sepax
requires at least 40 ml volume without any clotting for normal
processing, we had to set exclusion criteria for infants whose
collected UCB was o 40 ml or had massive clotting. In
addition, the enrollment criteria for our ongoing autologous
UCBC study is the same as the inclusion/exclusion criteria for
TH in Japan (68). If a neonate is born with signs and
symptoms of moderate-to-severe encephalopathy and meets
the criteria for TH, the neonate is considered for entry to this
clinical study. The estimated enrollment is six cases. To
ensure that UCB is properly collected without contamination,
we exclude outborn infants from the trial. If an infant is born
with severe asphyxia, the UCB is collected directly after birth
from an umbilical cord vein, with special care to avoid
contamination. We obtain parental consent before collecting
UCB. UCB is volume and red blood cell reduced by
centrifugation in a closed system using an automated machine
(Sepax). The volume- and red blood cell–reduced UCB
contains numerous types of nucleated cells, including a
variety of stem cells, such as CD34+ hematopoietic stem/
endothelial progenitor cells. The processed UCB is divided
into three doses and stored at 4 °C until use. The cell dose is
not adjusted. The total amount of UCB collected is used after
the above-mentioned simple centrifugation. The estimated
doses administered would be ∼6 × 108 cells per newborn.
If the total amount of UCB is o40 ml, the newborn will not

be enrolled in the trial because the automated UCB process
may not be reliable if the volume to be processed is o40 ml.
We examined the quality of the processed and noncryopre-
served UCB using UCB collected from volunteers before
commencement of this trial. At 72 h after the processing,
there was no growth of bacteria or increase in potassium, and
cell viability was well maintained. We obtain written informed
consent from the parents twice: first, when we judge that the
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newborn with HIE meets the entry criteria after the initial
assessment, which is normally a few hours after birth; second,
before the first administration of UCBC treatment for the
newborn.
Autologous volume-reduced cord blood cells are adminis-

tered intravenously at 12–24, 36–48, and 60–72 h after birth.
Circulatory and respiratory status is closely monitored during
and after the cell treatment. The primary outcome measure is
the rate of adverse events. The combined rate of three adverse
events at 30 days of age—death, continuous respiratory
support, and continuous use of vasopressor—will be com-
pared between the neonates receiving cell therapy and those
with conventional therapy including hypothermia. The
secondary outcome measure is efficacy. Neuroimaging at
12 months of age and neurodevelopmental function measured
with Bayley III at 18 months of age will be compared between
the cell recipients and neonates with conventional therapy.
The infants will be followed for safety and neurodevelop-
mental outcome up to 10 years of age.
We studied five patients who underwent autologous UCBC

therapy in December 2014–December 2016. We did not
detect any significant adverse effects of the treatment. We
present the profiles of five cases in Table 1. We enrolled one
patient with severe HIE and four patients with moderate HIE.
The patient with severe HIE and the one with moderate HIE
showed abnormality on brain magnetic resonance imaging,
but all five survived up to 1 year. Additional randomized
clinical trials are needed to prove the effectiveness of
autologous UCBC therapy over the TH-only treatment.

CONCLUSION
Cell therapies such as autologous UCBCs and BM stem cells,
umbilical cord/BM-MSCs, and other stem cell therapies are
leading to new protocols for the prevention of ischemic brain
damage. Further preclinical studies are expected to optimize
the treatment protocol, and multicenter clinical trials are
needed to prove safety and efficacy.
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